Course Type	Course Code	Name of the Course	L	Т	P	Credits
DE	NECD560	Telemetry and Data Transmission	3	0	0	3

Course Objective

To discuss the fundamentals and applications of telemetry.

Learning Outcomes

- To understand telemetry applications.
- To understand communication system protocols used in telemetry.
- To understand basics of data transmission.

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome			
1	Telemetry system block diagram, Measurement unit, Transmitters and receivers, Antennas, computer networking basics, Data processing, Industrial applications of Telemetry	6	To understand system level block diagram in telemetry			
2	Industrial Telemetry: Applications in petroleum, power utility, rail road, mining, manufacturing, municipal water supplies, Fire safety systems, Biomedical, Temperature measurement, fluid level and fluid flow measurement.		To understand industrial applications of telemetry.			
.3	Communication systems: Analog modulation schemes, AM, FM, signal representations, Bandwidth analysis, Noise analysis, Multiplexing, Digital modulation schemes, Antennas and link analysis.	6	To understand basics of communication systems.			
4	Source Encoding and Digital signals: Sampling, Line encoding, PCM, DPCM, Delta modulation, common source encoding protocols for audio, video and images. Digital transmission through AWGN channel.	6	To understand digital signaling and encoding methods.			
5	Digital Communication: Digital communication systems block diagram, Correlation type demodulator, BER analysis for Binary modulation, M-ary PAM, PSK, DPSK and QAM, Bandpass signal transmission and analysis.	6	To understand design of transmitters and receivers in digital communication systems.			
6	Channel Encoding: Communication channel modeling, channel capacity, bounds on communication, coding for reliable communication, linear block codes, cyclic codes and convolutional codes.		To understand requirement for channel encoding in data transmission.			
7	Computer networking, TCP/IP layers, Data link layer, Network layer, Transport layer and application layer. Data processing software, Industrial protocols RS-232, RS-422, RS-485, PLC and RTU protocols in industrial control systems.	6	To understand basics of computer networking.			
	Total	42				

Text Books:

- 1. Proakis, John G., and Masoud Salehi. Communication system engineering. Prentice Hall of India Privet I, 2023.
- 2. D.Patranabis, Telemetry Principles, Tata McGraw Hill, New Delhi, 1999.

Reference Book:

1. Carden, Frank, Russell P. Jedlicka, and Robert Henry. Telemetry systems engineering. Artech House, 2002.